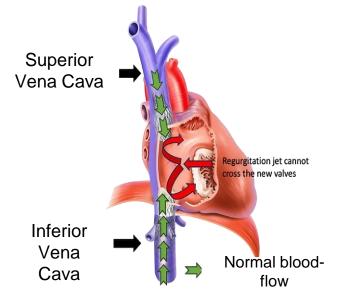
A Novel Strategy Targeting Caval Reflux to Alleviate Right Heart Failure in Severe Tricuspid Regurgitation

Early Outcomes from TRICAV-1:

A Multicenter US Feasibility Study

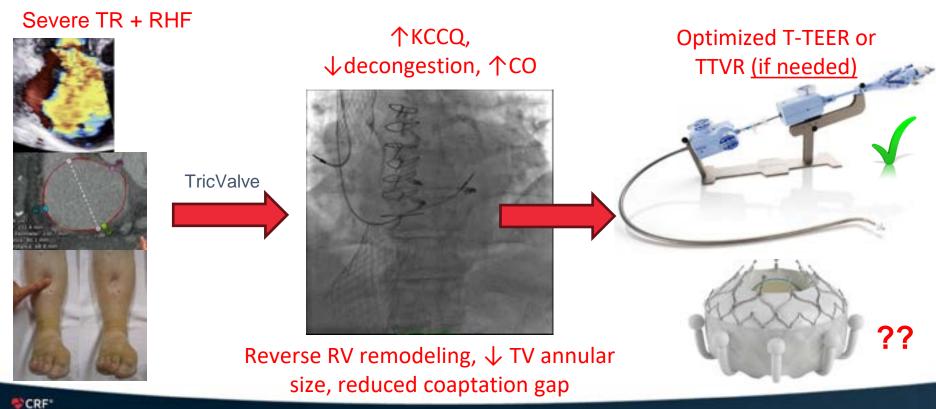
Rishi Puri MD, PhD, FRACP


Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Nature of Financial Relationship	Ineligible Company	
Consultant	Centerline Biomedical, Medtronic, Abbott, P&F, VDyne, VahatiCor, AdvNanoT, NuevoSono, Alleviant Medical, Protembis, GE Healthcare, Pi-Cardia, AngioWave, T45 Labs, HRT, Anteris, Nyra Medical, Synkopi	
Equity	Centerline Biomedical, VahatiCor, NuevoSono, Synkopi, T45 Labs	

TricValve CAVI: A physiological approach to severe TR



TricValve Model	Valve size (mm)	
SVC 25	25	
SVC 29	29	
IVC 31	31	
IVC 35	35	

Ø	Prior tricuspid interventions or surgery	
Ø	Existing pacemakers or defibrillator leads (and future ones)	
Ø	TTE guidance for IVC (Fluoro for SVC deployment)	
Ø	100% agnostic to tricuspid anatomy, all future TV options open	
Ø	Conscious sedation	
Ø	Easier imaging requirements	
Ø	 Minimal to zero HALT in global experience, under standard OAC conditions) Low rate of thrombosis 	

TricValve Enables Systemic & Clinical Improvement While Maintaining All Future Options

TRICAV-1: Alleviating Caval Reflux in RHF

Indication for Use

Patients with hemodynamically relevant tricuspid insufficiency and caval reflux, who are at extreme risk or inoperable for open surgical therapy.

Compassionate Use

- 31 patients treated in the US
- Not eligible for clip or replacement or surgery

TRICAV-I EFS

- Largest Heterotopic
 Replacement trial for TR to date
- Output to 80 patients
- © 50 US sites
- Treated 53 patients

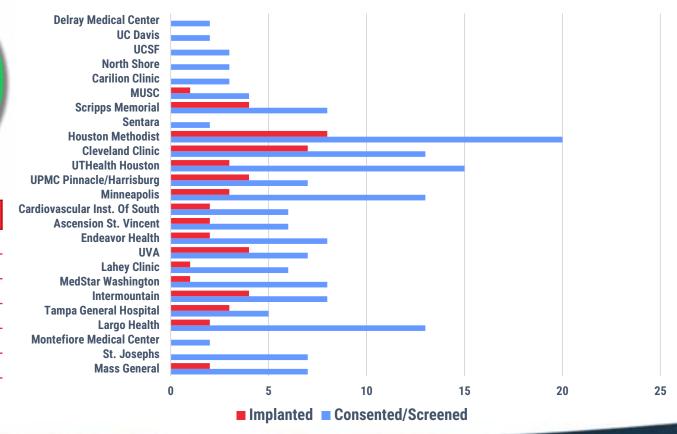
This Presentation

TRICAV-II

- Randomized vs OMT (2:1)
- 430 randomized pts
- © 60 US sites
- Includes 200 pts Registry
- O Crossover at 12 months

O In Discussion with FDA

TRICAV-1 US SITES (N=50)


Enrolling(26) Upcoming (24)

53 Patients Implanted with TricValve

Top Implanting Sites Houston Methodist: 8 Cleveland Clinic: 7 Scripps Memorial: 4 UVA Health: 4 Intermountain: 4 UMPC Pinnacle: 4

TRICAV-1 Site Enrollment

TRICAV-1: Endpoints

Primary Endpoints

Safety at 30 Days:

Major Adverse Events (MAEs) related to Device- and/or Procedure as adjudicated by the **Clinical Event Committee (CEC)**.

MAEs include:

- · Cardiovascular Death
- Q-wave myocardial infarction (MI)
- Disabling stroke
- Life threatening bleeding
- Pulmonary embolism
- Renal failure requiring dialysis
- Major access-site and vascular complications

- Major cardiac structural complications
- Permanent pacemaker implantation
- Any valve-related dysfunction, migration, thrombosis
- Unplanned intervention performed to correct device/valve dysfunction/ failure

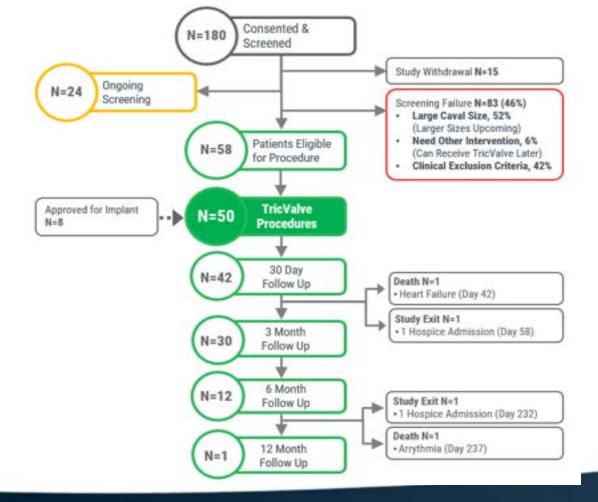
Note: All definitions are based on TVARC quidelines (JACC 2023)

Clinical Efficacy at 30 Days:

- Adequate TricValve function assessed by Imaging Core Laboratory
- Improvement in quality-of-life Kansas City Cardiomyopathy Questionnaire
- Improvement in New York Heart Association (NYHA) functional class
- Improvement in six-minute walk test (6MWT)

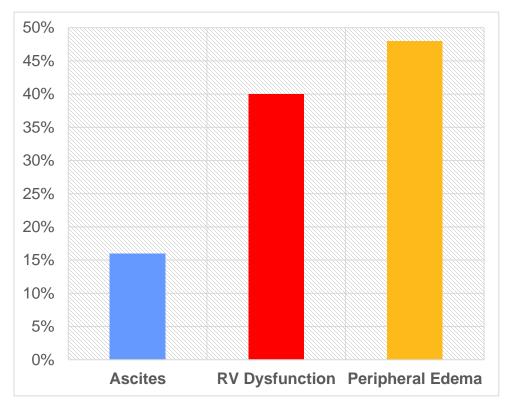
Secondary Endpoints

Safety (at 12 months): The percentage of subjects with Device- and/ or Procedure-related MAEs through 1 year, as classified by the CEC.


Clinical Efficacy (measured at 3 months, 6 months and 1 year):

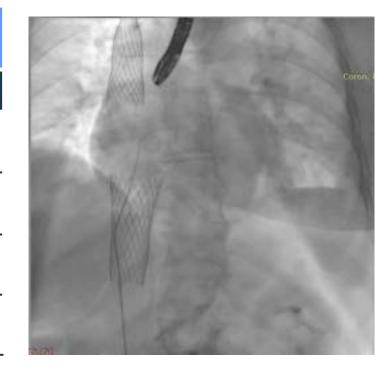
- All-Cause mortality and Cardiovascular Mortality
- Changes in RV dimensions, volumes and indexes of RV dysfunction
- Heart failure hospitalization(HFH)
- RVAD implantation or heart transplant
- Changes in QoL (≥10 points by KCCQ overall summary score).
- Changes in symptom status (Reduction of at least 1 NYHA class).
- Changes in functional capacity (6MWT, with distance >30m).

TRICAV-1 Study Progress


Screen failure rate is driven by lack of a larger IVC size and clinical exclusion criteria

TRICAV-1: Baseline Data

Baseline characteristics		
Age (years)	79.6 ± 8.0	
Female	38%	
Male	62%	
NYHA (%)	IV (2%); III (98%)	
Euro Score II	6.00 ± 4.56	
TRI-Score	4.6 ± 1.6	
TR etiology (%)	FTR (80%); DTR (20%)	
Atrial Fibrillation	92%	
Cancer History	36%	
Coronary Artery Disease	48%	
Pacemaker/ICD	40%	
Prior Tricuspid Intervention	14%	
Renal Dysfunction	38%	


Laboratory values		
NTproBNP (pg/mL)	2185.9 +/- 2677.2	
Creatinine (mg/dL)	1.28 +/- 0.37	

TRICAV-1: Procedural Results in 50 Patients

Variables	TricValve Procedural Outcomes	
Procedures Time Skin-to-Skin (min)	87.8 +/-34.0	
Successful deployment and correct positioning of TricValve valves	96%*	
Successful access, delivery, and retrieval of TricValve delivery system	98.0%	
No emergency surgery or reintervention	0%	
No procedural mortality	0%	

^{*1} Valve in Valve for PVL; 1 Tortuosity preventing IVC deployment

TRICAV-1: 30-Day Echo data

Echo Parameters	Baseline [Mean±SD]	30-Days [Mean±SD]
LVEF (%)	55.9 ± 8.6	57.0 ± 8.4
PASP (mmHg)	33.1 ± 12.2	31.4 ± 10.6
RV TAPSE (mm)	18.2 ± 4.4	16.9 ± 4.3
RV Free Wall Strain (%)	-22.7 ± 5.2	-21.1 ± 6.4
RV Fractional Area Change (%)	35.0 ± 8.0	34.6 ± 8.7
Caval Reflux Severity	Grade 2 (2%) (n=1) Grade 3 (90%) (n=45)	Grade 1 (57%)* Grade 2 (22%)* Grade 3 (2%)

IVC Caval Reflux by color Doppler Ultrasonography

- Grade 1: no-reflux or <1 cm
- Grade 2: <3 cm
- Grade 3: >3cm

^{*}Echo data being collected & analyzed: some data is not available yet.

TRICAV-1: MAEs at 30 Days

	N (%)
Life Threatening Bleeding	1 (2.1%)
Major Access-site and Vascular Complications	2 (4.2%)
Valve-in-Valve	2 (4.2%)

NO OCCURENCE OF:

- Cardiovascular Death
- Q-Wave Myocardial Infarction
- Disabling Stroke
- Pulmonary Embolism
- Renal Failure Requiring Dialysis
- Major Cardiac Structural Complications
- Need for Pacemaker Implantation
- Any Valve-related Dysfunction, Migration, Thrombosis

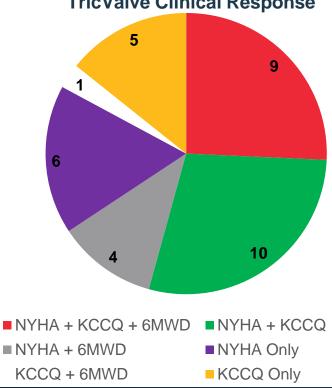
Favorable Safety
Profile At 30 Days
in High-Risk Elderly
Population with
Multiple
Comorbidities

TRICAV-1: Clinical Functional Outcomes

Improvement at Any Follow-Up	Frequency	
(30 Days to 6 Months)	n	%
Improvement of 1 or More		
Endpoints	<mark>35</mark>	83.3%
NYHA + KCCQ + 6MWD	9	21.4%
NYHA + KCCQ	10	23.8%
NYHA + 6MWD	4	9.5%
NYHA Only	6	14.3%
KCCQ + 6MWD	1	2.4%
KCCQ Only	5	11.9%

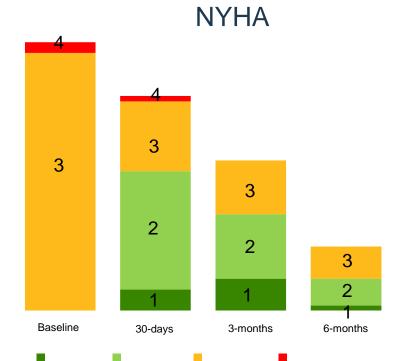
NYHA

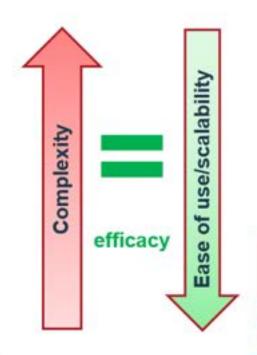
Improvement (≥ 1 Class)


KCCQ

Improvement (Score > 10 Points)

6MWT


Distance Improvement (> 30 meters)



KCCQ

	Baseline	30 Days	3 Months	6 Months
KCCQ	50.6 ± 19.3	54.4 ± 24.5	60.4 ± 21.6	65.5 ± 22.3
	(n=50)	(n=44)	(n=29)	(n=15)
6MWT	258.1 ± 125.6	244.5 ± 101.5	256.4 ± 97.4	265.8 ± 105.7
(mt)	(n=50)	(n=36)	(n=24)	(n=14)

TricValve: Bringing CAVI to our suffering 'forgotten majority' US TR patients

T-TEER

- Commercially optimal for 240-50% of the severe TR population
- Anatomical constraints (leaflets, coaptation gaps, leads)
- Imaging constraints
- Future options ???

TTVR

- Commercially optimal for ≈40-50% of severe TR population
- Anatomical constraints (annulus, pacing leads, RV size, IVC angles)
- RV function/PA coupling/RV shock
- Imaging constraints
- Thrombosis/durability, safety, future options ????

CAVI - PRESERVES ALL FUTURE TV OPTIONS (NO RANDOMIZED DATA)

- Commercially applicable to ≈80% at least of severe TR population
- RV function/PA coupling/RV shock (less than TTVR)

ALL of these therapies cause reverse RV remodeling and improved QoL

