AORTOSAVE

Next Generation Transcatheter Endo-Bentall System for Combined Aortic Valve and Ascending Aorta Replacement

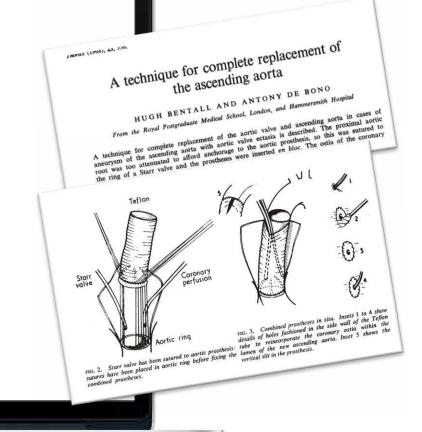
Prof. Diego Felipe Gaia MD PhD MBA

Cardiovascular Surgery Department, Escola Paulista de Medicina, São Paulo, Brazil

Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Ineligible Company
P&F
Medtronic, Abbott, Edwards, WL Gore, P&F, Braile Biomedical
Company Name(s)
Company Name(s)
Company Name(s)
Company Name(s)



Unmet Clinical Need

- Bentall and composite root replacements represent about 15–20% of all aortic valve surgeries in tertiary centers.
- Aortic root replacement volumes are increasing due to improved screening and aging populations.
- A transcatheter solution Endo-Bentall can drastically improve patient outcomes and expand treatment to inoperable patients.

Estimates from surgical registries & literature suggest:

- USA: ~7,000–10,000 Bentall procedures per year
- Europe (EU): ~10,000-12,000 per year
- Global Total: ~ 30,000 per year (including Asia, LATAM, etc.)

European Journal of Cardio-Thoracic Surgery 46 (2014) 887-893 doi:10.1093/ejcts/ens083 Advance Access publication 17 March 2014

Mortality characteristics of aortic root surgery in North America

Manuel Caceres^{a,}, Yicheng Ma^c, J. Scott Rankin^{c,}, Paramita Saha-Chaudhuri^c, Brian R. Englum^c,

James S. Gammie*, Rakesh M. Surř, Vinod H. Thourani*, Fardad Esmailian*, Lawrence S. Czer*,

High-risk subgroups	Number AVS (%)		Operative mo	ortality (%)	
				AVS	CVR
Age > 75	4064	7.2	15.1	16.6	0.49
Endocarditis	3034	1.7	13.5	15.1	0.74
Aortic stenosis	7852	2.0	3.2	5.1	0.28
Dialysis	188	14.0	7.7	22.2	0.09
Concomitant valve procedure	926	19.0	5.2	11.1	0.02*
Previous valve surgery	1558	18.6	4.1	8.2	0.08
Emergency or salvage status	2727	13.9	14.6	22.5	0.0005*

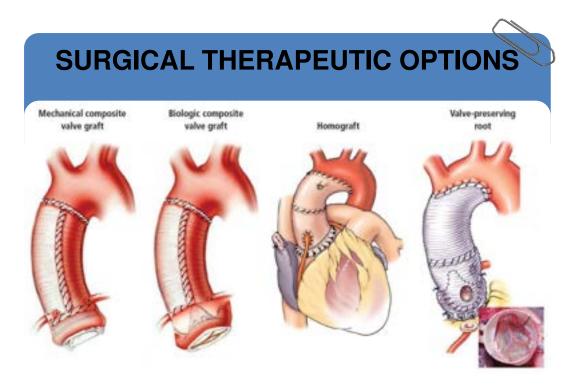
ORIGINAL ARTICLE

(Dentan Procedure)

vely common

Type A Dissection Globally – 3.0/100.000 Estimated global cases – 200.000 cases/year *1

True Aneurysm Ascending – 10/100.000 Estimated global cases – 550.000 cases/year *2

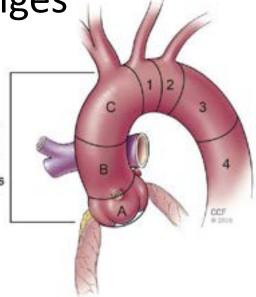

TAVR patients with Ascending Aneurysm – 25% Estimated global cases – 75.000 *3

- 1. Yin J. Cardiology Plus 2022
- 2. Nasab E. J Cardiothoracic Surg 2022
- 3. Rylski B. Eur J Cardio-Thoracic Surg 2014

Untreated Disease: A Critical Gap in Care

The **Bentall procedure** is among the most technically demanding cardiac surgeries, requiring **cardiopulmonary bypass**, **cardiac arrest**, & **reimplantation of the coronary arteries**.

Ascending TEVAR Unique Anatomical Challenges


- Unique challenges
 - Curvature
 - Movement
 - Short length
 - Coronary arteries
 - AV commissures
 - Innominate artery
 - Shear stresses
 - Hemodynamics

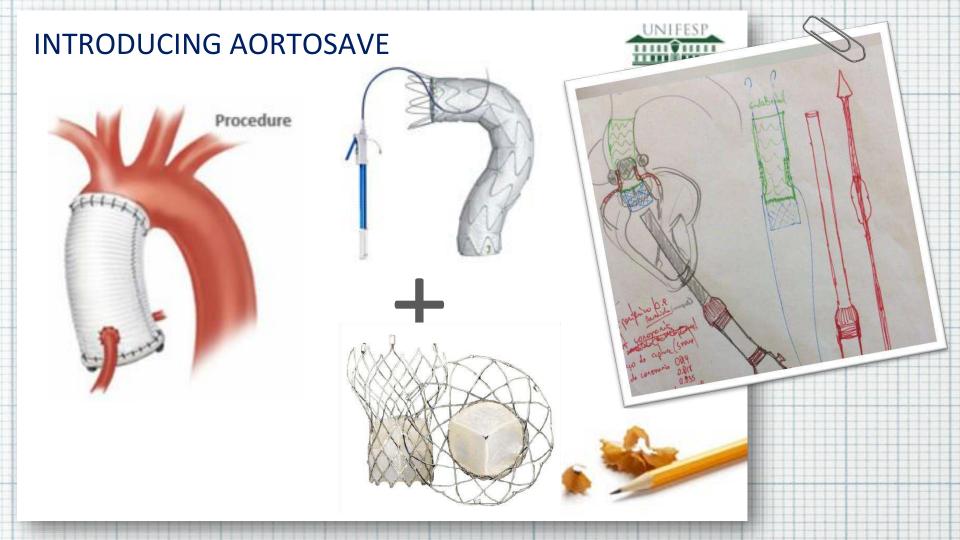
Zone 0

OC: RtPA to Innominate

0B: Coronaries to RtPA

0A: Anulus to coronaries

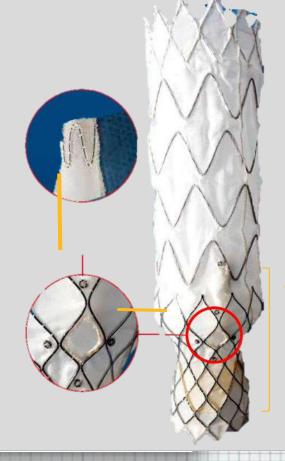
Roselli. J Thorac Cardiovasc Surg 2018;155:1381-9



INTRODUCING AORTOSAVE

AORTOSAVE is a first-in-class transcatheter Endo-Bentall system that delivers a minimally invasive, modular solution for combined aortic valve and ascending aorta replacement.

No currently approved endovascular systems can fully replace the aortic root, ascending aorta, and valve in a single transcatheter procedure.

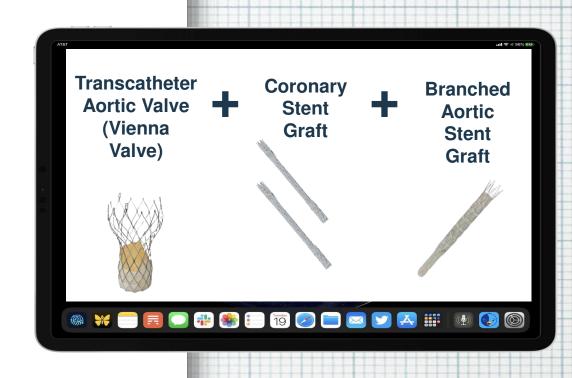

AORTOSAVE Technology Overview

- AORTOSAVE is a modular, transcatheter Endo-Bentall system.
- Combines a TAVR valve, branched stent graft for ascending aorta, and coronary stent grafts.
- Dry-tissue bovine pericardium enables ready-to-use delivery.
- AORTOSAVE integrates coronary access with branches.
- Design allows for: repositionable, retrievable and supra annular performance. Reducing procedural risks.

BRANCHES

Allow access to the coronary arteries

Greater fixation area for the branches


AORTIC GRAFT

Fixates into the ascending aorta

AORTIC VALVE

Replaces the patient's native valve; Outer skirt to improve sealing

The TAVR used in **Endo-Bentall** is undergoing clinical investigation for CE Mark (NCT04861805) and has been successfully implanted in more than 5y F.U.

AORTOSAVE Self-Expandable Transcatheter Endo-Bentall System

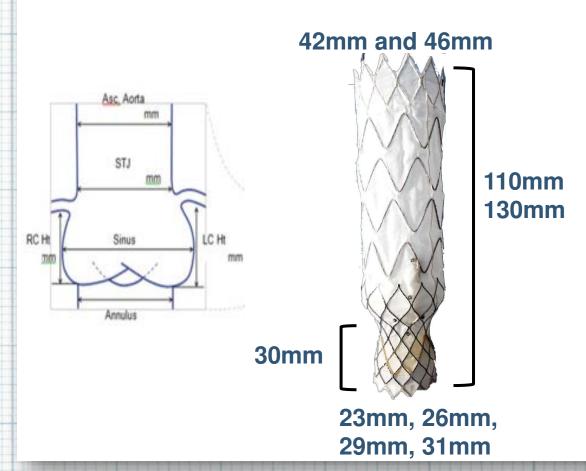
Delivery system

Pre-mounted transcatheter system:

22-24Fr

Single access: subclavian, BCT or femoral.

AORTOSAVE Endo-Bentall Procedure



AORTOSAVE Off the shelf!

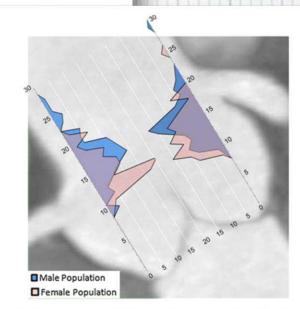
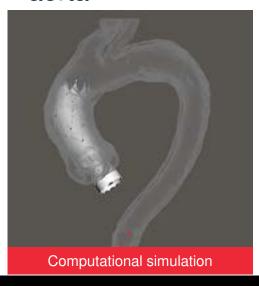
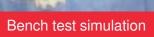



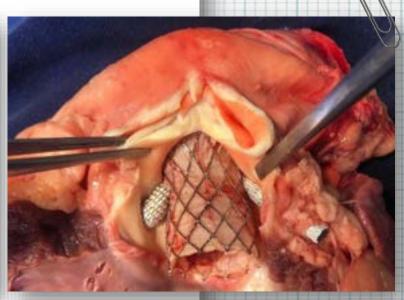
Fig. 3 Coronary ostial distribution—Visual representation of the distribution of the locations of the right and left coronary ostia overlaid onto a CT image showing the corresponding anatomy of the aortic root. Note the lower location of the right coronary artery (RCA) ostium and wider variation as compared to the ostium of the left main artery (LMA)


Knight J, Kurtcuoglu V, Muffly K, Marshall W Jr, Stolzmann P, Desbiolles L, Seifert B, Poulikakos D, Alkadhi H. Ex vivo and in vivo coronary ostial locations in humans. Surg Radiol Anat. 2009 Oct;31(8):597-604. doi: 10.1007/s00276-009-0488-9. Epub 2009 Mar 14. PMID: 19288041.

PRECLINICAL & CLINICAL ROADMAP

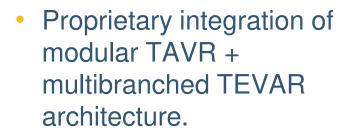
- 3D-printed human anatomical models
- Device conformability in the ascending aorta

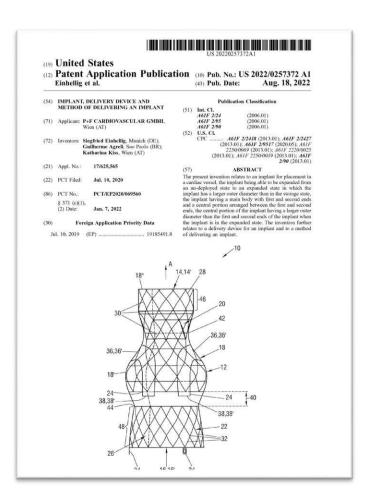
Beating Heart Simulation


Procedure Simulation Confirming:

Coronary Artery Access | Successful Branch Implantation | Preserved Coronary Flow

Animal Studies in Sheep & Calf




- Despite anatomical limitations, sheep studies demonstrated:
 Trackability | Pushability | Accurate deployment
- Calf studies confirmed safe connection of the main graft with coronary branches

ΙP

- Patient-specific customization approach and precannulated delivery method are novel.
- Patent applications pending in US, EU, and Brazil.

GO TO MARKET ROADMAP

AORTOSAVE

2025

FIH and
Design
Refinement

GLOBAL SITES IN US, EUROPE, & LATAM 2028-29

PIVOTAL Study

GLOBAL POST MARKET REGISTRIES 2031

MARKET LAUNCH

FDA REQUEST FOR BREAKTHROUGH DESIGNATION 2026-27

Sites Expansion MODULAR CE MARK LEVERAGING PREDICATE DEVICES 2030

GLOBAL SITE NETWORK EXPANSION

Endobentall market expected to be \$5 billion by 2031 (100.000 cases /y)

Conclusions

AORTOSAVE is the first transcatheter Endo-Bentall system designed to address the complex and underserved population with combined aortic valve and ascending aorta disease. By offering a transcatheter solution,

AORTOSAVE has the potential to:

- Expand treatment to high-risk and inoperable patients
- Reduce surgical burden and procedural complications
- Preserve coronary access for long-term management
- Addresses a significant unmet need for complex aortic interventions

That's not the future! That's AortoSave, today!

